Elasticsearch: Beyond Just Search
While “search” is in the name, Elasticsearch is much more than a search engine. Let’s break down what it is, when to use it, and how to get started.
What is Elasticsearch?
At its core, Elasticsearch is a distributed, RESTful analytics engine. Think of it like a very fast, document-oriented database that excels at:
- Full-text search
- Log analysis
- Metrics aggregation
- Application monitoring
When to Use Elasticsearch
-
Complex Search Requirements
- Need fuzzy matching
- Multiple language support
- Faceted search
- Geospatial queries
-
Analytics and Metrics
- Log analysis
- Performance monitoring
- Business intelligence
- Real-time dashboards
-
Large-Scale Data
- Billions of documents
- Terabytes of data
- Need for real-time results
Key Concepts
Documents and Indices
Index (like a database)
├── Document 1 (like a row)
│ ├── Field 1: value
│ ├── Field 2: value
│ └── Field 3: value
├── Document 2
│ ├── Field 1: value
│ └── Field 2: value
└── Document 3
└── Field 1: value
Basic Operations
Index a Document
// Using the @elastic/elasticsearch client
const document = {
title: 'Understanding Elasticsearch',
tags: ['search', 'database', 'tutorial'],
views: 1000,
published: true,
};
await client.index({
index: 'blog-posts',
document,
});
Search Documents
// Basic search
const result = await client.search({
index: 'blog-posts',
query: {
match: {
title: 'elasticsearch tutorial',
},
},
});
// With filters
const result = await client.search({
index: 'blog-posts',
query: {
bool: {
must: [{ match: { title: 'elasticsearch' } }],
filter: [{ term: { published: true } }, { range: { views: { gte: 100 } } }],
},
},
});
Common Patterns
1. Search-as-You-Type
// Create an index with autocomplete
await client.indices.create({
index: 'products',
body: {
mappings: {
properties: {
name: {
type: 'text',
fields: {
suggest: {
type: 'completion',
},
},
},
},
},
},
});
// Use it
const suggestions = await client.search({
index: 'products',
suggest: {
product_suggestions: {
prefix: 'ela', // User input
completion: {
field: 'name.suggest',
},
},
},
});
2. Faceted Search
// Get counts by category
const result = await client.search({
index: 'products',
aggs: {
categories: {
terms: { field: 'category.keyword' },
},
avg_price: {
avg: { field: 'price' },
},
},
});
3. Geospatial Search
// Find stores near a location
const result = await client.search({
index: 'stores',
query: {
geo_distance: {
distance: '10km',
location: {
lat: 40.7128,
lon: -74.006,
},
},
},
});
Best Practices
-
Index Design
- One index per use case
- Use aliases for zero-downtime reindexing
- Plan your mappings carefully
-
Performance
- Use filters before queries
- Limit field indexing
- Use scroll API for large result sets
-
Reliability
- Always use multiple nodes
- Regular backups
- Monitor cluster health
Common Pitfalls
-
Memory Usage
DON'T: Store everything as keyword ┌────────────────┐ │ field: keyword │ → Huge memory usage └────────────────┘ DO: Use text with sub-fields ┌───────────────────────┐ │ field: text │ │ └─ keyword: subset │ → Efficient └───────────────────────┘
-
Query Design
- Avoid deep pagination
- Don’t use scripts in high-volume queries
- Be careful with wildcard queries
-
Data Modeling
- Denormalize when it makes sense
- But don’t go overboard with nested objects
Bottom Line
-
Use Elasticsearch when:
- Complex search is crucial
- You need real-time analytics
- Traditional DBs struggle with scale
-
Don’t use Elasticsearch when:
- ACID compliance is required
- You need complex transactions
- Your data is highly relational
Remember: Elasticsearch excels at search and analytics but isn’t a replacement for your primary database. Use it alongside your existing data store for best results.