Elasticsearch: Beyond Just Search
While “search” is in the name, Elasticsearch is much more than a search engine. Let’s break down what it is, when to use it, and how to get started.
What is Elasticsearch?
At its core, Elasticsearch is a distributed, RESTful analytics engine. Think of it like a very fast, document-oriented database that excels at:
- Full-text search
- Log analysis
- Metrics aggregation
- Application monitoring
When to Use Elasticsearch
- 
Complex Search Requirements - Need fuzzy matching
- Multiple language support
- Faceted search
- Geospatial queries
 
- 
Analytics and Metrics - Log analysis
- Performance monitoring
- Business intelligence
- Real-time dashboards
 
- 
Large-Scale Data - Billions of documents
- Terabytes of data
- Need for real-time results
 
Key Concepts
Documents and Indices
Index (like a database)
├── Document 1 (like a row)
│   ├── Field 1: value
│   ├── Field 2: value
│   └── Field 3: value
├── Document 2
│   ├── Field 1: value
│   └── Field 2: value
└── Document 3
    └── Field 1: value
Basic Operations
Index a Document
// Using the @elastic/elasticsearch client
const document = {
  title: 'Understanding Elasticsearch',
  tags: ['search', 'database', 'tutorial'],
  views: 1000,
  published: true,
};
await client.index({
  index: 'blog-posts',
  document,
});
Search Documents
// Basic search
const result = await client.search({
  index: 'blog-posts',
  query: {
    match: {
      title: 'elasticsearch tutorial',
    },
  },
});
// With filters
const result = await client.search({
  index: 'blog-posts',
  query: {
    bool: {
      must: [{ match: { title: 'elasticsearch' } }],
      filter: [{ term: { published: true } }, { range: { views: { gte: 100 } } }],
    },
  },
});
Common Patterns
1. Search-as-You-Type
// Create an index with autocomplete
await client.indices.create({
  index: 'products',
  body: {
    mappings: {
      properties: {
        name: {
          type: 'text',
          fields: {
            suggest: {
              type: 'completion',
            },
          },
        },
      },
    },
  },
});
// Use it
const suggestions = await client.search({
  index: 'products',
  suggest: {
    product_suggestions: {
      prefix: 'ela', // User input
      completion: {
        field: 'name.suggest',
      },
    },
  },
});
2. Faceted Search
// Get counts by category
const result = await client.search({
  index: 'products',
  aggs: {
    categories: {
      terms: { field: 'category.keyword' },
    },
    avg_price: {
      avg: { field: 'price' },
    },
  },
});
3. Geospatial Search
// Find stores near a location
const result = await client.search({
  index: 'stores',
  query: {
    geo_distance: {
      distance: '10km',
      location: {
        lat: 40.7128,
        lon: -74.006,
      },
    },
  },
});
Best Practices
- 
Index Design - One index per use case
- Use aliases for zero-downtime reindexing
- Plan your mappings carefully
 
- 
Performance - Use filters before queries
- Limit field indexing
- Use scroll API for large result sets
 
- 
Reliability - Always use multiple nodes
- Regular backups
- Monitor cluster health
 
Common Pitfalls
- 
Memory Usage DON'T: Store everything as keyword ┌────────────────┐ │ field: keyword │ → Huge memory usage └────────────────┘ DO: Use text with sub-fields ┌───────────────────────┐ │ field: text │ │ └─ keyword: subset │ → Efficient └───────────────────────┘
- 
Query Design - Avoid deep pagination
- Don’t use scripts in high-volume queries
- Be careful with wildcard queries
 
- 
Data Modeling - Denormalize when it makes sense
- But don’t go overboard with nested objects
 
Bottom Line
- 
Use Elasticsearch when: - Complex search is crucial
- You need real-time analytics
- Traditional DBs struggle with scale
 
- 
Don’t use Elasticsearch when: - ACID compliance is required
- You need complex transactions
- Your data is highly relational
 
Remember: Elasticsearch excels at search and analytics but isn’t a replacement for your primary database. Use it alongside your existing data store for best results.
